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Abstract

An algorithm is presented which solves the multi-dimensional advection-di�usion

equation on complex shapes to 2nd-order accuracy and is asymptotically stable in time.

This bounded-error result is achieved by constructing, on a rectangular grid, a di�er-

entiation matrix whose symmetric part is negative de�nite. The di�erentiation matrix

accounts for the Dirichlet boundary condition by imposing penalty like terms.

Numerical examples in 2-D show that the method is e�ective even where standard

schemes, stable by traditional de�nitions, fail. It gives accurate, non oscillatory results

even when boundary layers are not resolved.
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1 Introduction

Currently there is a growing interest in long time integration for solving problems in

areas such as uid-mechanics, aero-acoustics, electro-magnetics, material-science, and others.

Clearly, it will be very advantageous if one could formulate the spatial discretization in a way

which guarantees that, for the semi-discrete formulation, the solution-error norm is bounded

by the norm of the truncation error. Most, if not all, existing algorithms rely on stability

for convergence. However, even stable schemes, which at a given time converge with mesh

re�nement may have a temporally growing error, [1]. This is particularly true for hyperbolic

operators.

This paper considers 2nd-order accurate approximations to model linear advection-di�usion

equations in one and more dimensions, on domains which may be irregular. By an irregular

domain, we mean a body whose boundary points do not necessarily coincide with nodes of

a rectangular mesh.

In section 2 we treat a model \shock-layer" equation (linearized Burger's equation),

ut + aux =
1

R
uxx; t � 0; 0 < x < 1; R� 1:

We develop there the theory for the one dimensional semi-discrete system resulting from the

spatial di�erentiation used in the �nite di�erence algorithm. Energy methods are used in

conjunction with \SAT" type terms (see [1], [2]), in order to �nd boundary treatment and

\arti�cial-viscosity-like terms", that preserve the accuracy of the scheme while constrain-

ing an energy norm of the error to be temporally bounded for all t > 0 by a \constant"
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proportional to the norm of the truncation error.

In section 3 it is shown how the methodology developed in section 2 is used as a building

block for the multi-dimensional algorithm, even for irregular shapes.

Section 4 presents numerical results. Section 4.1 deals with the steady state solution

to the \shock-layer" equation for a large range of the \Reynolds number", R. Oscillations

that appear in the numerical solution when using a standard central �nite-di�erencing, are

eliminated (or dramatically reduced) when the bounded-error algorithm is used.

Section (4.2) considers steady-state solution to a two dimensional scalar model to the

boundary layer equations,

ut + aux + buy =
1

R
uyy; R� 1; b < 0;

both for rectangular and trapezoidal domains. Again, the bounded-error algorithm out-

performs the standard scheme in ways described therein.

Section (4.3) presents a time dependent example, modeling a boundary-layer being ex-

cited sinosoidially,

ut + aux + buy =
1

R
uyy + �b sin[k(x� at)]:

Here, aside from the usual performance criteria, such as error-norms and quality of the

velocity pro�les, we see that the error-bounded algorithm also has a signi�cantly smaller

phase error.

2



2 The Scalar One Dimensional Case

Consider the scalar advection-di�usion problem

@u

@t
= a

@u

@x
+

1

R

@2u

@x2
+ f(x; t); �L � x � �R; t � 0; a > 0; � (2:1a)

u(x; 0) = u0(x); (2:1b)

u(�L; t) = gL(t); (2:1c)

u(�R; t) = gR(t);

and f(x; t) 2 C2.

Let us discritize (2.1) spatially on the following uniform grid:

x x x x x x x x
1 2 3 j-1 j j+i N-2 N-1 N

x

x=h∆
γ h
LΓ

RL
Γ

γ h
R

Figure 1: One dimensional grid.

Note that the boundary points, x = �L and x = �R, do not necessarily coincide with x1

and xN . Set xj+1 � xj = h, 1 � j � N � 1; x1 � �L = Lh, 0 � L < 1; �R � xN = Rh,

0 � R � 1.

�The results for the case a < 0 are found by an analysis anologus to the one presented in this section,
and are presented in Appendix I.
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The projection unto the above grid of the exact solution u(x; t) to (2.1), is uj(t) =

u(xj; t)
4
= u(t). Let ~D be a matrix representing aux +

1
R
uxx, at internal points without

specifying yet how it is being constructed. Then we may write

d

dt
u(t) = [ ~Du(t) +B+T] + f(t); (2:2)

where T is the truncation error due to the numerical di�erentiation, and f(t) = f(xj; t),

1 � j � N . The boundary vector B has entries whose values depend on gL, gR, L, R in

such a way that ~Du + B represents aux +
1
R
uxx everywhere to the desired accuracy. The

standard way of �nding a numerical approximate solution to (2.1) is to omit T from (2.2)

and solve

d

dt
v(t) = ~Dv(t) +B+ f(t); (2:3)

where v(t) is the numerical approximation to the projection u(t). Subtracting (2.3) from

(2.2) one gets an equation for the solution error, ~�(t) = u(t)� v(t);

d

dt
~� = ~D~�+T: (2:4)

Our requirement for temporal stability is that k ~� k, the L2 norm of ~�, be bounded by

a \constant" proportional to hm (m being the spatial order of accuracy). Note that this

de�nition is more severe than either the G.K.S. stability criterion [3], or the de�nition in [1].

It can be shown that if ~D is constructed in a standard manner, i.e., away from the

boundaries the numerical second derivative is symmetric and the numerical �rst derivative

is antisymmetric, (and near the boundaries one uses \non-symmetric" di�erentiation), then
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there are ranges of R and L for which ~D is not negative de�nite. Since in the multi-

dimensional case one may encounter all values of 0 � L; R � 1, this is unacceptable.

The rest of this section is devoted to the construction of a scheme of 2nd order spatial

accuracy, which is temporally stable for L, R. The basic idea is to follow the procedure used

in [2]. The present case is more complicated due to the di�culty in treating the advection

term.

Note �rst that the solution projection uj(t) satis�es, besides (2.2), the following di�er-

ential equation:

du

dt
= Du +Te + f(t); (2:5)

where now D is indeed a di�erentiation matrix, that does not use the boundary values and

therefore Te 6= T but it too is a truncation error due to di�erentiation.

Next let the semi-discrete problem for v(t) be, instead of (2.3),

dv

dt
= [Dv � �L(ALv� gL)� �R(ARv � gR)] + f(t); (2:6)

where gL = (1; . . . ; 1)TgL(t); gR = (1; . . . ; 1)T gR(t), are vectors created from the left and

right boundary values as shown. The matrices AL and AR are de�ned by the relations:

ALu = gL �TL; ARu = gR �TR; (2:7)

i.e., each row in AL(AR) is composed of the coe�cients extrapolating u to its boundary value

gL(gR), at �L(�R) to within the desired order of accuracy. (The error is then TL(TR) ).

The diagonal matrices �L and �R are given by

�L = diag (�L1
; �L2

; . . . ; �LN ); �R = diag (�R1
; �R2

; . . . ; �RN ): (2:8)
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Subtracting (2.6) from (2.5) we get

d~�

dt
= [D~�� �LAL~�� �RAR~�+T1]; (2:9)

where

T1 = Te + �LTL + �RTR:

Taking the scalar product of ~� with (2.9) one gets:

1

2

d

dt
k ~� k2 = (~�; (D � �LAL � �RAR)~�) + (~�;T1)

= (~�;M~�) + (~�;T1): (2.10)

We notice that (~�;M~�) is (~�; (M +MT )~�)=2, where

M = D � �LAL � �RAR: (2:11)

If (M +MT ) can be made negative de�nite then

(~�; (M +MT )~�)=2 � �c0 k ~� k
2; (c0 > 0): (2:12)

Equation (2.10) then becomes

1

2

d

dt
k ~� k2� �c0 k ~� k

2 +(~�;T1)

and using Schwartz's inequality we get after dividing by k ~� k

d

dt
k ~� k� �c0 k ~� k + k T1 k
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and therefore (using the fact that v(0) = u(0))

k ~� k�
k T1 kM

c0
(1 � e�c0t) (2:13)

where the \constant" k T1 kM= max
0���t

k T1(� ) k.

If we indeed succeed in constructing M such that M + MT is negative de�nite, with

c0 > 0 independent of the size of the matrix M as it increases, then it follows from (2.13)

that the norm of the error will be bounded for all t by a constant which is O(hm) where m

is the spatial accuracy of the �nite di�erence scheme (2.6). The numerical solution is then

temporally stable.

It can be shown that as 1
R
! 0, so does c0. When c0 = 0, the di�erential inequality is

d

dt
k ~� k � k T1 k (2:14)

leading to

k ~� k � k T1 kM t; (2:15)

i.e., a linear growth in time, a result typical of hyperbolic systems. This result can also be

obtained formally from (2.13) by letting c0 ! 0 for any �xed t.

The rest of this section is devoted to the task of constructing M in the case of m = 2,

i.e., a second order accurate �nite di�erence algorithm. We shall deal separately with the

hyperbolic and parabolic parts of the R.H.S. of (2.11)

Let

M =
1

R
MP + aMH =

1

R
(DP � �LPALP � �RPARP ) + a(DH � �LHALH � �RHARH): (2:16)
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The parabolic terms are given by:

DP =
1

h2

2
66666666666666664

1 �2 1 0

1 �2 1 0

0 1 �2 1

0 0 1 �2 1
. . .

. . .
. . .

1 �2 1 0 0

1 �2 1 0

1 �2 1
1 �2 1

3
77777777777777775

; (2:17)

�LP =
1

h2
diag

h
�
(P )
L1

; 0; . . . 0
i
=

1

h2
diag

"
4

(2 + L)(1 + L)
; 0; . . . ; 0

#
; (2:18)

�RP =
1

h2
diag

h
0; 0; . . . ; �

(P )
RN

i
=

1

h2
diag

"
0; 0; . . . ;

4

(2 + R)(1 + R)

#
; (2:19)

ALP =

2
666664

1

2
(2 + L)(1 + L) �L(2 + L)

1

2
(L + 2L) 0 . . . 0

...
...

...
...

...
1

2
(2 + L)(1 + L) �L(2 + L)

1

2
(L + 2L) 0 . . . 0

3
777775 ; (2:20)

ARP =

2
666664
0 . . . 0

1

2
(R + 2R) �R(2 + R)

1

2
(2 + R)(1 + R)

...
...

...
...

...

0 . . . 0
1

2
(R + 2R) �R(2 + R)

1

2
(2 + R)(1 + R)

3
777775 : (2:21)

The hyperbolic terms are given by:
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DH =
1

2h

8>>>>>>>>>>><
>>>>>>>>>>>:

2
666666666664

�2 2

�1 0 1

�1 0 1
. . .

. . .
. . .

�1 0 1 0

�1 0 1

�2 2

3
777777777775

+

2
666666666664

c1
c2

c3
. . .

cN�2
cN�1

cN

3
777777777775

2
666666666664

�1 2 �1
0 �1 2 �1
1 �2 0 2 �1

. . .
. . .

. . .
. . .

. . .

1 �2 0 2 �1
1 �2 1 0

1 �2 1

3
777777777775

+ 2h~c

2
666666666664

0 �1 1
1 �1 �1 1

1 �1 0 �1 1
. . .

. . .
. . .

. . .
. . .

1 �1 0 �1 1
1 �1 �1 1

1 �1 0

3
777777777775

9>>>>>>>>>>>=
>>>>>>>>>>>;

; (2:22)

where

ck =
1

N � 1
[(cN � c1)k + (Nc1 � cN )]; (2:23)

and

~c =
1

2
(c1 � cN ): (2:24)

For a > 0 in (2.1a), the left boundary is, for the hyperbolic part, an \outow" boundary

on which we do not prescribe a \hyperbolic boundary condition", therefore, in this case

�LH = 0. When a < 0, then �RH = 0 { see the Appendix for details.
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Here, with a > 0,

�RH =
1

2h
diag [0; 0; . . . ; �

(H)
RN�1

; �
(H)
RN

] (2:25)

and

ARH =

2
66666664

0
. . . 0

0

0 �R 1 + R
�R 1 + R

3
77777775
: (2:26)

Next we shall show that the parabolic part of M is negative de�nite. The symmetric part

of MP ; ~MP = 1
2
(MP +MT

P ), is found using equations (2.17) to (2.21), to be

~MP =
1

2h2

2
6666666666666666666666666666666666666666666666664

�2
3L � 1

L + 1

2� L

2 + L

3L � 1

L + 1
�4 2 0

2� L

2 + L
2 �4 2

2 �4 2

. . .
. . .

. . .

2 �4 2

0 2 �4 2
2 � R

2 + R

2 �4
3R � 1

R + 1

2� R

2 + R

3R � 1

R + 1
�2

3
7777777777777777777777777777777777777777777777775

:

(2:27)
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We now decompose ~MP as follows:

~MP =
1

2h2

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

�

2
666666666664

�4 2

2 �4 2

2 �4 2
. . .

. . .
. . .

2 �4 2

2 �4 2

2 �4

3
777777777775
+ (1 � �)

2
66666666666666664

0 0 0

0 0 0

0 0 �2 2

2 �4 2
. . .

. . .
. . .

2 �4 2 0

0 2 �2 0 0

0 0 0
0 0 0

3
77777777777777775

+

2
6666666666666666666666666666666666666666664

�2(1 � 2�)
3L � 1

L + 1
� 2�

2 � L

2 + L

3L � 1

L + 1
� 2� �4(1 � �) 2(1 � �)

1� L

2 + L
2(1 � �) �2(1� �) 0

0

0

0 �2(1 � �) 2(1 � �)
2� R

2 + R

2(1 � �) �4(1� �)
3R � 1

R + 1
� 2�

2 � R

2 + R

3R � 1

R + 1
� 2� �2(1 � 2�)

3
7777777777777777777777777777777777777777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

(2:28)
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We look for 1 > � > 0 such that the second and third matrices in (2.28) are non-positive

de�nite. The �rst matrix in (2.28) is already negative de�nite by the argument leading to

eq. (2.60), in [2]. By the same argument it immediately follows that its largest eigenvalue is

smaller than ���2. For 0 < � < 1, the second matrix in (2.28) is non-positive de�nite, see

eq. (2.63) & (2.64) in [2]. The third matrix in (2.28) has two square 3� 3 corners which are

negative for 0 < � < :275. This completes the proof that ~MP is indeed negative de�nite.

Next we would like to show that ~MH = 1
2
(MH + MT

H) is non-positive de�nite. Using

equations (2.22){(2.26) we have

~MH =
1

4h

2
666666666666666664

�4� 2c1 1 + 2c1 0
1 + 2c1 �2c1 0

0
0 0 0

0
. . .

0 2cN + 2R�
(H)
N�1 � 1 � 2cN � (1 + R)�

(H)
N�1 + R�

(H)
N

�1� 2cN � (1 + R)�
(H)
N�1 + R�

(H)
N 4 + 2cN � 2(1 + R)�

(H)
N

3
777777777777777775

:

(2:29)

We now write ~MH as the sum of three \corner-matrices",

~MH =
1

4h
[mH1

+mH2
+mH3

]; (2:30)

where
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mH1
=

2
6666666664

�4 � 2c1 1 + 2c1
0

1 + 2c1 �2c1
0

0
. . .

0

3
7777777775
;

mH2
=

2
66666666664

0

0 0
. . .

2R�
(H)
N�1 �1� (1 + R)�

(H)
N�1 + R�

(H)
N

0

�1 � (1 + R) �
(H)
N�1 + R�

(H)
N 4� 2(1 + R)�

(H)
N

3
77777777775
;

mH3
= cN

2
66666664

0
0

. . .

2 �2
�2 2

3
77777775
: (2:31)

Clearly mH3
is N.P.D (non-positive de�nite) for 8cN � 0. Also, mH1

is N.P.D for c1 � 1=4.

A simple computation shows that mH2
is N.P.D if �N�1 and �N satisfy

�
(H)
N =

2 + �

1 + R
; (� � 0) (2.32)

�
(H)
N�1 = �

1� R(1� �)

(1 + R)2
: (2.33)

Thus we have proved that ~MH is indeed non-positive de�nite, and therefore ~M = 1
R
~MP+a ~MH

is negative de�nite for 8 1
R
; a > 0, with its eigenvalues bounded away below zero by ���2=R,

0 < � < :275:
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3 The Scalar Two Dimensional Case

We consider an inhomogeneous advection-di�usion equation, with constant coe�cients,

in a domain 
. To begin with we shall assume that 
 is convex and has a boundary @
 2 C2.

The convexity restriction is for the sake of simplicity in presenting the basic idea; it will be

removed later. The problem statement is:

@u

@t
= a

@u

@x
+ b

@u

@y
+ �1

@2u

@x2
+ �2

@2u

@y2
+ f(x; y; t); t > 0; �1; �2 > 0; (3:1a)

u(x; y; 0) = u0(x; y); (3:1b)

u(x; y; t)j@
 = uB(t): (3:1c)

We shall refer to the following grid representation:

y

x

k=1

k=2

k=3

k

k=MR

Ω

j=1 j=2 j=3 j=Mcj

Figure 2: Two dimensional grid.
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We have MR rows and MC columns inside 
. Each row and each column has a discretized

structure as in the 1-D case, see �gure 1. Let the number of grid points in the kth row be

denoted by Rk and similarly let the number of points in the jth column be Cj. Let the

solution projection be designated by uj;k(t). By U(t) we mean, by analogy to the 1-D case,

U(t) = (u1;1; u2;1; . . . ; uR1;1;u1;2; u2;2; . . . ; uR2;2; . . . ;u1;MR
; u2;MR

; . . . ; uRMR;MR
)

� (u1;u2; . . . ;uMR
): (3.2)

Thus, we have arranged the solution projection in vectors according to rows, starting from

the bottom of 
.

If we arrange this array by columns (instead of rows) we will have the following structure,

U(C)(t) = (u1;1u1;2; . . . ; u1;C1
;u2;1; u2;2 . . . ; u2;C2

; . . . ;UMC ;1; uMC;2; . . . ; uMC;CMC
)

� (u
(C)
1 ;u

(C)
2 ; . . . ;u

(C)
MC

): (3.3)

Clearly

U(C)(t) = PU; (3:4)

where P is an orthogonal permutation matrix, of order ` � `, ` being the number of grid

points within 
.

The operator �1@
2=@x2 + a @=@x in (3.1a), including the boundary terms, is represented

on the kth row byM
(x)
k , whose structure is given by (2.16) and the de�nition following it (see

(2.17) through (2.26)). Similarly let M
(y)
j represent �2@

2=@y2 + b @=@y on the jth column.
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With this notation, by analogy to (2.6), the two dimensional semi-discrete problem becomes

dV

dt
= (M(x) + P TM(y)P )V +G(x) + P TG(y) + f(t); (3:5)

where V is the numerical approximation of U;

M(x) =

2
666666664

M
(x)
1

. . .

M
(x)
k

. . .

M
(x)
MR

3
777777775
; M(y) =

2
666666664

M
(y)
1

. . .

M
(y)
j

. . .

M
(y)
MC

3
777777775
;

(3:6)

and

G(x) = G
(x)
P +G

(x)
H = [(�

(P )
L1
gL1

+ �
(P )
R1
gR1

); . . . ; (�
(P )
Lk
gLk + �

(P )
Rk
gRk); . . . ;

(�
(P )
LMR

gLMR + �
(P )
RMR

gRMR )]

+ [(�
(H)
L1
gL1

+ �
(H)
R1

gR1
); . . . ; (�

(H)
Lk

gLk + �
(H)
Rk

gRk); . . . ;

(�
(H)
LMR

gLMR + �
(H)
RMR

gRMR )];

G(y) = G
(y)
P +G

(y)
H = [(�

(P )
B1
gB1

+ �
(P )
T1
gT1); . . . ; (�

(P )
Bj
gBj + �

(P )
Tj
gTj); . . . ;

(�
(P )
BMC

gBMC + �
(P )
TMC

gTMC )]

+ [(�
(H)
B1
gB1

�
(H)
T1

gT1); . . . ; (�
(H)
Bj

gBj + �
(H)
Tj

gTj); . . . ;

(�
(H)
BMC

gBMC + �
(H)
TMC

gTMC )]: (3.7)

16



The subscripts Bj (\B" for bottom) play the same role as Lk (\L" for left). The same

remark applied to subscripts Tj (\T" for top) and Rk (\R" for right).

Note that �HLk(�
H
Rk
) = 0 when a > 0(a < 0). Similarly �HBj(�

H
Tj
) = 0 when b > 0(b < 0).

Designating the two dimensional array o� errors, �ij, by E = U�V, the equation for E

becomes

dE

dt
= [M(x) + P TM(y)P ]E+T; (3:8)

where T represents the sum of the various truncation errors.

The time rate of change of k E k2 is given by

1

2

d

dt
k E k2= (E; (M(x)+ P TM(y)P )E) + (E;T): (3:9)

By the same argument that follow eq. (3.15) in [2] it is clear that the norm of the error,

k E k, is bounded by a constant, where the \constant" k T kM= max
0���t

k T(� ) k.

In [2], it was shown that if the domain 
 is not convex or simply connected, the above

results still hold. This is also true here.

Note that if 1
R
= � = 0 (or �1 = �2 = 0 in the 2-D case) then the di�erentiation operator,

M , becomes non-positive de�nite. In that case, it follows immediately from (3.9) that the

bound on the error-norm is not a \constant" but grows linearly in time.
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4 Numerical Examples

4.1 One Dimensional Case

Here we consider the problem

@u

@t
+ ux =

1

R
uxx; t � 0; 0 � x � 1; (4:1:1)

u(0; t) = 1;

u(1; t) = 0;

u(x; 0) = u0(x):

The steady state solution to (4.1.1) is:

u(x) =
1 � e�R(1�x)

1� e�R
: (4:1:2)

Note that R (= 1=�) plays the role of Reynolds number in this model for a \linear shock

layer".

Eq. (4.1.1) was solved numerically by two methods. In one (referred to as \standard")

we use central di�erencing for the spatial di�erentiation, and 4th-order Runge-Kutta in time.

In this \standard" case, there is no need for special treatment at the boundaries.

The numerical approximation v, in this \standard" case, satis�es the following �nite

di�erence equation:

1

2h
(vj+1 � vj�1)�

1

Rh2
(vj+1 � 2vj + vj�1) = 0; (0 � j � n) (4:1:3)
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with v0 = 1 and vN = 0. The solution to (4.1.3) is:

vj =
�j � �2N�j

1� �2N
; � =

2 + hR

2� hR
: (4:1:4)

Notice, that if the \cell Reynolds number," RC = hR > 2, then � < 0 and the numerical

solution, vj, will be oscillatory. If RC < 2 then we resolve the \shock layer" (or \boundary

layer") and the solution will be smooth.

Numerical steady-state solutions of (4.1.1) using the \standard scheme", and using the

\bounded-error" algorithm, (2,6), described above are shown in �gures 3{8 for �x = 1=100

and various values of R. Both schemes were advanced to steady state using 4th-order Runge-

Kutta. It is clear that when RC < 2, both schemes give good results. For RC = 10

(R = 1000) both show oscillations, but the new algorithm approximates the exact solution

much better. When RC = 103 (R = 105), the \standard" numerical solution is useless while

the \bounded-error" scheme gives excellent results; in fact far better than for RC = 10.
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Figure 3: Standard scheme, RC = 2.
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Figure 4: SAT, RC = 2.
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Figure 5: Standard scheme, RC = 10.
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Figure 6: SAT, RC = 10.
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Figure 7: Standard scheme, RC =
1000.
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Figure 8: SAT, RC = 1000.

4.2 A Steady State Two Dimensional Case

Here we shall consider a steady-state problem, which models, in a way, the 2-D boundary

layer equations. The formulation is as follows: (The time derivative is left in the equation,

since the approach to steady state will be via temporal advance.)

ut + aux + buy =
1

R
uyy ; t � 0; 0 � x < 1; 0 � y � 1; (4:2:1)

u(0; y; t) =
1� ebRy

1 � ebR
+

1

10
bRe

bRy

2 sin�y; (4:2:1a)
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u(x; 0; t) = 0; (4:2:1b)

u(x; 1; t) = 1: (4:2:1c)

We also take a = 1, and in order to have a growing \boundary layer" on y = 0, we must set

b < 0.

The analytic solution of this problem is:

u(x; y) =
1 � ebRy

1� ebR
+

1

10
bRe

bRy

2 exp

" 
�
b2R2

4
� �2

!
x

Ra

#
sin�y: (4:2:2)

Figure 9 is a 3-D rendition of u(x; y) for R = 90; 000. (This 3-D plot looks the same to

the eye for various �1 < b < �4=
p
R = �4=300.) Figure 10 is a plot of the \velocity

pro�le" inside the \boundary-layer" (0 < y < :04) at x = :1; :25; :9 and b = �4=
p
R. The

\bumps" at x = :1 and x = :25 may be considered as \emulating" results of uid mechanics

computation for an incompressible ow near the entrance to a channel, see e.g. [4].

The numerical solution of (4.2.1) using a standard central di�erencing scheme depends

strongly on the value of b (at a given R). Figures 11 and 12 show the 3-D plot of vj;k with

b = �1 and b = �4=
p
R = �4=300. Figs. 13 and 14 show the pro�les at x = :1 and x = :9

for b = �1 and � 4
300

, respectively. It should be emphasized that the \peak" in �gure 11 has

nothing to do with the \bumps" in the exact solution (see �gure 10). The \peak" occurs

way outside the boundary layer, and also the amplitude behavior with the x-coordinate is

counter to that of �gure 10. The \peak" is due to a purely numerical oscillation.

The same series of plots, but as computed by the new algorithm, is shown in �gures

15{18.
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Figure 9: Exact solution.
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Figure 10: Exact solution near the
boundary.
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Figure 11: Standard scheme, b = �1.
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Figure 12: Standard scheme, b =

�4=300.
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Figure 13: Standard scheme, b = �1.
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Figure 14: Standard scheme, b =
�4=300.
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Figure 15: SAT, b = �1.
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Figure 16: SAT, b = �4=300.
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Figure 17: SAT, b = �1.
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Figure 18: SAT, b = �4=300.

It should be noted (see table 1) that the \bounded-error" algorithm converges to steady

state (residual L2 norm < 10�13) an order of magnitude faster than the standard scheme

when using the same �t, while cpu-time/iteration is about the same. The standard scheme

may be run at bigger �t ( by about a factor of 2) while the SAT algorithm was already at

its maximum CFL number. If we let each scheme run at its own maximum �t then the run

time are about equal, but the di�erence in errors remains.

'time' to L2 L1 norm L2 norm L1 norm max error
'steady-state' residual of the error of the error of the error location

b = �1
SAT 21.09 9.911e-14 8.805e-05 1.076e-04 3.108e-04 45, 46
Standard 417 9.987e-14 0.485139 0.674233 -1.00423 10, 4
b = �4=300
SAT 52.64 9.943e-14 1.665e-04 1.142e-03 0.01220 50, 2

Standard 416 9.967e-14 3.362e-03 2.447e-02 -0.2864 50, 2

Table 1: Rectangular geometry results.

We also ran the same equations for a non-strictly rectangular geometry, where the upper

boundary instead of being y = 1 is y = 1 � (tan �)x, where � is the angle which the upper
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boundary makes with the x-axis, see �gure 19.
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Figure 19: The trapezoid geometry.

For many �'s the results of the performance of the two schemes are una�ected by the

change. However, there are some �'s for which the standard scheme converges to steady

state much slower than before at its own maximum allowed �t, while the performance of

the bounded-error algorithm remains the same as before. For example, see table 2, for the

case of � = 3:9�. As in [2], the point is that for non-rectangular geometry the distance that

a boundary is away from a computational mode, h, might become extremely small and

this causes the deterioration in the performance of the standard scheme. Here it is reected

in the fact that the standard scheme cannot \support" the larger allowed �t that can be

achieved for the case � = 0. For complex geometries it is very di�cult to predict a-priori

what range the values of  will take. The SAT methods (the bounded error algorithm) is

insensitive to the variations in  caused by the geometry of the domain.
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'time' to L2 L1 norm L2 norm L1 norm max error

'steady-state' residual of the error of the error of the error location

b = �4=300
SAT 52.56 9.984e-14 1.707e-04 1.156e-03 0.01220 50, 2

Standard 401.11 9.995e-14 3.448e-03 2.479e-02 -0.2864 50, 2

Table 2: Trapezoid geometry results.

4.3 A 2-D time dependent example

To check on the temporal \performance" of the bounded-error scheme, we considered the

following problem:

ut + aux + buy =
1

R
uyy + �b sin[k(x� at)]; t � 0; 0 � x < 1; 0 � y � 1; (4:3:1a)

u(x; y; 0) =
1 � ebRy

1 � ebR
+
bR

10
e
bRy

2 e�(
b2R2

4
+�2) x

Ra sin�y + y� sin kx; (4:3:1b)

u(0; y; t) =
1� ebRy

1 � ebR
+
bR

10
e
bRy

2 sin�y � y� sin kat; (4:3:1c)

u(x; 0; t) = 0; (4:3:1d)

u(x; 1; t) = 1 + � sin[k(x� at)]: (4:3:1e)

The exact solution of (4.3.1) is:

u(x; y; t) =
1� ebRy

1 � ebR
+
bR

10
e
bRy

2 e�(
b2R2

4
+�2) x

Ra sin�y + y� sin[k(x� at)]: (4:3:2)

Again we take a = 1, R = 90; 000, b = �1; and � 4p
R
. The parameters � and k have

certain constraints. If we want u > 0, we must take � < 1. The number of computational

nodes, N , puts a lower bound of 2�N on the wave-length, 1=k, i.e., 1 < k < 2�N . In the
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actual computations we used � = 1=2 and k = 30. All the plots for this time dependent case

are shown for t = 10. Figure 20 shows a 3-D plot of u(x; y; 10). As in the steady-state case,

the plot looks the same to the eye for various �1 < b < �4=
p
R = �4=300. Figures 21, 22

show the 3-D plots of vj;k for the standard and bounded-error schemes respectively. Figure

23, shows a x-pro�le of v at y = :2, for both schemes and the exact pro�le, for b = 1. Figure

24, gives the same pro�les at y = :8. These plots bring out the di�erences in the phase errors

of the numerical algorithms. Figures 25{28, repeat the same information as given in �gure

21{24, but for b = �4
p
R = �4=300. The e�cacy of the bounded-error algorithm is quite

evident { even when b = �4=
p
R, where the norm-errors away from the boundary layer are

not dissimilar, the phase error of the right running waves is quite a bit smaller in the case

of the proposed present scheme.
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Figure 20: Exact solution.
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Figure 21: Standard scheme, b = �1.
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Figure 22: SAT, b = �1.
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Figure 23: b = �1, y = 0:2 pro�les.
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Figure 24: b = �1, y = 0:8 pro�les.
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Figure 25: Standard scheme, b =
�4=300.
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Figure 26: SAT, b = �4=300.
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Figure 27: b = �4=300, y = 0:2 pro-
�les.
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Figure 28: b = �4=300, y = 0:8 pro-

�les.
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5 Conclusions

(i) A second order method has been developed which renders spatial second derivative

�nite di�erence operators negative de�nite. This is not surprising, since negative de�-

niteness was achieved for 4th order parabolic operators in [2].

(ii) A second order method has been developed which renders spatial �rst derivative �nite

di�erence operators non-positive de�nite. For the case when boundary points do not

coincide with grid nodes ( 6= 1), this is a new result.

(iii) The results (i) and (ii) allow us to construct a solution operator for the advection

di�usion problem (and, of course, the di�usion equation) which is negative de�nite,

thereby ensuring asymptotic temporal stability.

(iv) The construction of these operators allows an immediate simple generalization to multi-

dimensional problems, on complex domains which are covered by rectangular meshes.

The proofs of the boundedness of the error-norms carry over rigorously to the (linear)

multi-dimensional cases.

(v) Numerous numerical examples demonstrate the e�cacy of this methodology.
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Appendix I

As in the a > 0 case the hyperbolic terms are given by:

DH =
1

2h

8>>>>>>>>>>><
>>>>>>>>>>>:

2
666666666664

�2 2

�1 0 1

�1 0 1
. . .

. . .
. . .

�1 0 1 0
�1 0 1

�2 2

3
777777777775

+

2
666666666664

c1
c2

c3
. . .

cN�2
cN�1

cN

3
777777777775

2
666666666664

�1 2 �1
0 �1 2 �1
1 �2 0 2 �1

. . .
. . .

. . .
. . .

. . .

1 �2 0 2 �1
1 �2 1 0

1 �2 1

3
777777777775

+ 2h~c

2
666666666664

0 �1 1

1 �1 �1 1
1 �1 0 �1 1

. . .
. . .

. . .
. . .

. . .

1 �1 0 �1 1
1 �1 �1 1

1 �1 0

3
777777777775

9>>>>>>>>>>>=
>>>>>>>>>>>;

; (A:1)

where

ck =
1

N � 1
[(cN � c1)k + (Nc1 � cN )]; (A:2)

and

~c =
1

2
(c1 � cN ): (A:3)
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For a < 0 in (2.1a), the right boundary is, for the hyperbolic part, an \outow" boundary

on which we do not prescribe a \hyperbolic boundary condition", therefore, in this case

�RH = 0,

and

�LH =
1

2h
diag [�

(H)
L1

; �
(H)
L2

; 0; . . . ; 0; 0]; (A:4)

ALH =

2
66666664

1 + L �L
1 + L �L 0

0
. . .

0 0

3
77777775
: (A:5)

Next we would like to show that ~MH = 1
2
(MH +MT

H) is non-negative de�nite,then a ~MH

is non-positive de�nite. Using equations (A.1){(A.5) we have

~MH =
1

4h

2
66666666664

�4� 2c1 � 2(1 + L)�
(H)
1 1 + 2c1 � (1 + L)�

(H)
2 + L�

(H)
1 0

1 + 2c1 � (1 + L)�
(H)
2 + L�

(H)
1 �2c1 + 2L�

(H)
2 0 0

0 0 0
. . .

0 2cN �1� 2cN
�1� 2cN 4 + 2cN

3
77777777775
:

(A:6)

We now write ~MH as the sum of three \corner-matrices",

~MH =
1

4h
[mH1

+mH2
+mH3

]; (A:7)
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where

mH1
= c1

2
66666664

�2 2

2 �2 0
0

0
. . .

0

3
77777775
;

mH2
=

2
66666666664

�4 � 2(1 + L)�
(H)
1 1� (1 + L)�

(H)
2 + L�

(H)
1 0

1 � (1 + L)�
(H)
2 + L�

(H)
1 +2�

(H)
2 0 0

0 0 0
0

0
. . .

0

3
77777777775
;

mH3
= cN

2
66666664

0

0
. . .

2cN �1� 2cN
�1 � 2cN 4 + 2cN

3
77777775
: (A:8)

Clearly mH1
is N.N.D (non-negative de�nite) for 8c1 � 0. Also, mH3

is N.N.D for

cN � �1=4. A simple computation shows that mH2
is N.N.D if �1 and �2 satisfy

�
(H)
1 = �

2 + �

1 + L
(� � 0); (A.9)

�
(H)
2 =

1� L(1 � �)

(1 + L)2
: (A.10)

Thus we have proved that ~MH is indeed non-negative de�nite, and therefore ~M = 1
R
~MP+a ~MH

is negative de�nite for 8 1
R
> 0, with its eigenvalues bounded away from zero by ���2=R,

0 < � < :275, as in the a > 0 case treated in the text.
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